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Abstract—The Two Cutters and Fugitive Ship game
posed by Isaacs is revisited again. We discuss and
analyze the singular configuration of this two-pursuer
one-evader differential game. This paper addresses the
question of whether or not either player has the ability
to exploit the dispersal surface. Specifically, we in-
vestigate the case where the Evader effectively stands
still (e.g., by dithering in a small neighborhood). We
show that the canonical optimal pursuit policy yields
chattering in the discrete-time version of the game.
As the timestep approaches zero, the capture time
approaches the Value of the game, and thus the Evader
is not penalized for standing still. Implications on
related scenarios are discussed.

I. Introduction
“My dictum is that the emphasis for two-
player differential games with perfect informa-
tion should be on singular surfaces. Through
them will the theory be completed.”

— Rufus Isaacs, 1969 [1], [2]
The singularities that can (and often do) occur in the

Value function is one of the major distinguishing factors
of differential games in the broader context of optimal
control. At least once, Isaacs, in his book [3], goes so far
as to say that the theory of differential games generalizes
optimal control, of which he refers to as “single-player
games”. By Value function, we mean the minimax value
of the cost/payoff of the (zero-sum) game.

In this paper, we dive deeper into one such singularity
which appears in the Two Cutters and Fugitive Ship game
(2CFSG) posed by Isaacs [3] (and also by Steinhaus [4]).
This is a two-player, zero-sum pursuit-evasion game with
two faster Pursuers and a single Evader, all players hav-
ing simple motion. The Pursuers cooperate fully, that is,
their individual control actions jointly comprise the strat-
egy of a single player. Capture of the Evader in minimum

time is sought by the Pursuers, while the Evader seeks to
“live” as long as possible. Since the Pursuers are faster,
capture is inevitable. As will be discussed further, the
singularity arises when the Evader is positioned anywhere
along the line joining the Pursuers. In this configuration,
the optimal choice in heading for all of the agents is not
unique, which is a symptom of the singularity. Thus, the
Evader, for example, has a choice between two different
headings, both of which will ultimately lead to the same
capture time under optimal play. This is characteristic
of the dispersal surface (DS), one of the singular surfaces
which Isaacs discussed [2], [3].

In his treatment of the Wall Pursuit Game, wherein
a single Pursuer captures an Evader constrained to run
along a flat wall, Isaacs discussed what he referred to as
a “perpetuated dilemma” [3]. The dilemma occurs when
the Pursuer and Evader lie on a line that is perpendicular
with the wall. Like the 2CFSG, this is a situation in
which the game-optimal choice of heading is not unique.
This dilemma is perpetuated when both players choose
the same direction (e.g., both players choose up) because
they will still be in the singular configuration after some
amount of time holding course. The symmetry is, of
course, broken after a single mismatch in the players’ con-
trols, after which optimal play resumes until termination
of the game (i.e., capture). If we conceive of the con-
tinuous game being implemented in discrete time (with
piece-wise constant controls/headings), then it is clear
that the probability of both players choosing the same
control over the entire playout of the game approaches
zero very quickly as the timestep shrinks. Thus, the
perpetuated dilemma is of little practical consequence,
since a single wrong guess by the Pursuer (e.g., Pursuer
aims up, but Evader chooses down) incurs only a small
loss in performance for the Pursuer, which shrinks as the
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timestep shrinks.
A perpetuated dilemma occurs in essentially the exact

same way in the 2CFSG (i.e., consider the second Pursuer
to be a reflection of the first along a virtual wall). We seek
to address what happens when the Evader deliberately
forces the game to stay on the DS, thereby perpetuating
the Pursuers’ dilemma of choosing which direction to
head and inflicting small, but continual, losses to the
Pursuers.

Isaacs’ geometric method of solving the 2CFSG (for
the case of simultaneous capture by both Pursuers) yields
the canonical strategy of all three agents heading to the
further of the two Apollonius circle intersections [3]. The
2CFSG was revisited by Garcia et al. in [5] wherein a can-
didate Value function was derived and shown to satisfy
the Hamilton-Jacobi-Isaacs equation and is continuous
and continuously differentiable everywhere (except for
the DS). Fuchs et al. analyzed a slight variant of the
2CFSG in which the Pursuers are endowed with a small
capture radius [6]. Note, when we refer to the 2CFSG, the
termination/criteria requires one or more Pursuers to be
coincident with the Evader (i.e., “point capture”). Most
recently, the 2CFSG was treated in [7] wherein surfaces
separating the state space into regions of solo capture by
one Pursuer or simultaneous capture by both are derived.
We refer to the separation of these different end-game
scenarios as the solution to the Game of Kind. Both [5]
and [7] treat the Game of Kind as well as the Game
of Degree (i.e., determining the minimax capture time),
but the latter utilized a reduced dimension state space
which will be employed here. Part of the motivation for
delving into the intricacies of the DS in the 2CFSG is the
fact that the possibility for non-uniqueness of the optimal
strategies appears to increase with additional agents. A
primary example is the multiple-pursuer single-evader
scenario considered in [8], [9]. There, the Evader appears
to have an additional choice under some circumstances:
staying put. Because the so-called regular solutions are
undefined along singular surfaces, we seek to understand
whether one or other player has some inherent advantage
in its ability to exploit the singularity.

The paper is organized as follows. Section II gives the
formulation of the 2CFSG, defines the singular config-
uration, and gives the regular solution of the 2CFSG.
Section III then analyzes the situation in which the
Evader chatters around some small neighborhood; as the
neighborhood shrinks, the Evader stands still. Section IV
provides some numerical simulations and discusses re-
sults. Section V concludes the paper with some remarks
on these results and their applicability to other scenarios.

II. Problem Formulation
In general position, the state of the system is comprised

of the Pursuer-Pursuer half-distance, xP , and the relative

position of the Evader in the rotating reference frame,
xE and yE . Figure 1 shows the reference frame, system
states, and control variables (headings). The x-axis is
affixed to the instantaneous positions of the Pursuers,
and the y-axis bisects them. By convention, the y-axis
is directed such that yE ≥ 0; we use E to denote
the evader’s position. Similarly, we have P1 = (xP , 0)
and P2 = (−xP , 0), by convention. We assume that
the Pursuers share the same speed; the Evader/Pursuer
speed ratio is denoted by µ.

x

y
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1

χ

(xP , 0)

1

P2
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(−xP , 0)

(xE , yE)
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Fig. 1: Reduced dimension coordinate system.

The three-state nonlinear kinematics of the 2CFSG are
given as [7]

ẋP =
1

2
(cosχ− cosψ), (1)

ẋE = µ cosϕ− 1

2
(cosχ+ cosψ) + 1

2

yE
xP

(sinχ− sinψ) ,
(2)

ẏE = µ sinϕ− 1

2
(sinχ+ sinψ)− 1

2

xE
xP

(sinχ− sinψ) ,
(3)

with initial conditions

xP (0) = xP0
, (4)

xE(0) = xE0
, (5)

yE(0) = yE0
. (6)

The angles χ, ψ, and ϕ represent the control actions of
P1, P2, and E, respectively. In general, these angles are
functions of time. The cost/payoff of the game is the
time-to-capture, tf , and the Value function is simply the
minimax capture time,

V = min
χ(t),ψ(t)

max
ϕ(t)

∫ tf

0

1dτ (7)

When the state of the system is in R1,2, that is, the
region in which the evader is captured simultaneously
by both pursuers under optimal play, [7, Theorem 2]
gives the players’ optimal state feedback strategies and
corresponding capture time as,



sinψ∗ =
yE0

+
√
µ2y2E0

+ (1− µ2)
(
µ2x2P0

− x2E0

)√
(1− µ2)

(
x2P0

− x2E0

)
+ (1 + µ2) y2E0

+ 2yE0

√
µ2y2E0

+ (1− µ2)
(
µ2x2P0

− x2E0

) ,
cosψ∗ =

(
1− µ2

)
xP0√

(1− µ2)
(
x2P0

− x2E0

)
+ (1 + µ2) y2E0

+ 2yE0

√
µ2y2E0

+ (1− µ2)
(
µ2x2P0

− x2E0

) ,
χ∗ = π − ψ∗,

sinϕ∗ =
1

µ

µ2yE0 +
√
µ2y2E0

+ (1− µ2)
(
µ2x2P0

− x2E0

)√
(1− µ2)

(
x2P0

− x2E0

)
+ (1 + µ2) y2E0

+ 2yE0

√
µ2y2E0

+ (1− µ2)
(
µ2x2P0

− x2E0

) ,
cosϕ∗ = − 1

µ

(
1− µ2

)
xE0√

(1− µ2)
(
x2P0

− x2E0

)
+ (1 + µ2) y2E0

+ 2yE0

√
µ2y2E0

+ (1− µ2)
(
µ2x2P0

− x2E0

) ,

(8)

tf =
1

1− µ2

√
(1− µ2)

(
x2P0

− x2E0

)
+ (1 + µ2) y2E0

+ 2yE

√
µ2y2E0

+ (1− µ2)
(
µ2x2P0

− x2E0

)
. (9)

Definition 1 (Singular configuration). The singular
configuration is any state (xP , xE , yE) on the dispersal
surface, that is,{

(xP , xE , yE)
∣∣ |xE | < xP , yE = 0

}
III. Simple Motion and Simpler Motion

In Isaacs’ “simple motion” paradigm the players con-
trol their respective headings while their speed is con-
stant and known. But what if, for example the Evader,
could control both his heading and his speed? We now
investigate the interesting scenario where the Evader, by
virtue of his ability to control his speed, opts to stay
stationary. The Pursuers are cognizant of the Evader’s
capability to set his speed but of course are not aware
of the Evader’s decision. At the same time, having the
Evader (E) reduce his speed to zero and thus stay in
place is not entirely inconsistent with the simple motion
paradigm: For example, suppose E goes around in a small
circle at his constant speed µ near his initial position, and
thus goes nowhere. In light of this, we now examine the
case where E opts to stay put while P1 and P2 exercise
their optimal pursuit strategies.

We consider the special case of a singular initial
configuration where the three players are collinear and
E is halfway between P1 and P2, the distance to the
pursuers being xP0 . The pursuers P1 and P2 exercise their
respective optimal strategies as stipulated in (8), while
the evader’s control/heading ϕ(t) is a square wave that
switches between 0 and π and whose period T → 0 – this
will leave the Evader in place, at the origin. Obviously,
the pursuers are unaware of E’s strategy/decision to
stay put, that is, E’s control time history ϕ(t) is not
preannounced to the Pursuers; however, E’s nominal
speed, the problem parameter µ, is known. It turns

out that the information of whether the Evader can or
cannot reduce her speed is immaterial to the Pursuer.
The pursuit-evasion game is analyzed in the reduced state
space R3

+.
We now embark on calculating the time-to-capture

tf . Whenever P1 and P2 employ their respective
optimal pursuit strategies ψ∗(xP , y(xP , xE , yE)) and
χ∗(xP , y(xP , xE , yE)) specified in (8) , the “closed loop”
dynamics are

ẋP = − cosψ∗, xP (0) = xP0

ẋE = µ cosϕ(t), xE(0) = 0

ẏE = − sinψ∗ + µ sinϕ(t), yE(0) = 0

E’s control ϕ(t) is now the square wave that rapidly
switches between 0 and π because its period T → 0. And
since sinϕ(t) ≡ 0 ∀ t ≥ 0 and the average over time of
the function cosϕ(t) is s.t.

cosϕ(t) ≈ 0,

the “closed loop” dynamics are

ẋP = − cosψ∗, xP (0) = xP0

xE ≈ 0

ẏE = − sinψ∗, yE(0) = 0

Since in the limit when the switching period T → 0 the
lateral displacement xE(t) ≡ 0, from (8) we calculate

sinψ∗ =
yE + µ sign(yE)

√
y2E + (1− µ2)x2P

µ|yE |+
√
y2E + (1− µ2)x2P

,

cosψ∗ =
(1− µ2)xP

µ|yE |+
√
y2E + (1− µ2)x2P

.

(10)



Hence, the closed loop dynamics end up being

ẋP = − (1− µ2)xP

µ|yE |+
√
y2E + (1− µ2)x2P

,

xP (0) = xP0
,

(11)

with
xE(t) ≡ 0,

and

ẏE = −
yE + µ sign(yE)

√
y2E + (1− µ2)x2P

|yE |+
√
y2E + (1− µ2)x2P

,

yE(0) = 0,

(12)

and since xP (t) is monotonically decreasing in t we
use (11) to calculate the time-to-capture

tf =
1

1− µ2

∫ xP0

0

µ|yE |+
√
y2E + (1− µ2)x2P
xP

dxP ,
(13)

where
dyE
dxP

=
1

1− µ2

yE + µ sign(yE)
√
y2E + (1− µ2)x2P

xP
,

yE(xP0
) = 0, xP0

≥ xP ≥ 0.

(14)

From (12) we deduce that when yE > 0, ẏE < 0, when
yE < 0, ẏE > 0 and when yE = 0, ẏE = 0. Hence the
solution of the yE differential equation (14) is yE(t) ≡ 0.
Inserting yE = 0 into (13) yields the time-to-capture

tf =
1√

1− µ2
xP0 (15)

We could have arrived at the same conclusion more
directly: (10) tell us that

lim
yE→0, yE>0

sinψ∗ = µ, lim
yE→0, yE<0

sinψ∗ = −µ

so when the switching frequency is high, that is, the
period T → 0,

ψ∗(t) = 0, (16)
sinψ∗(t) = 0, (17)

while at the same time

lim
yE→0

cosψ∗ =
√

1− µ2.

Also, from (10), when yE > 0, ψ∗ > 0 and when yE < 0,
ψ∗ < 0.

Thus ẏE(t) = 0 and therefore yE(t) ≈ 0, but
cosψ∗(t) ≈

√
1− µ2. The closed loop dynamics are

s.t. the pursuers are zigzagging along the x-axis until they
reach the Evader at the origin. And because their speed
along the x-axis is

√
1− µ2 while the initial distance to

the origin is xP0
, when the Evader stays put the time

to reach the origin/time-to-capture is given by (15). By
virtue of her not playing optimally but staying stationary
at the origin, the Evader caused the optimally controlled
Pursuers to zigzag and slow down. It is interesting to

numerically investigate the case where the period T is
small, but finite. We expect the speed of the Pursuers
along the x-axis to remain the same but the Evader
will be captured near the origin by just one of the two
Pursuers while the time-to-capture will decrease.

It is also interesting to numerically investigate the
case where the Evader opts to continuously modu-
late his heading according to ϕ(t) = π

2 (1 + sinωt)
while the Pursuers employ their optimal strategies
ψ∗(xP , y(xP , xE , yE)) and χ∗(xP , y(xP , xE , yE)), where-
upon the “closed loop” dynamics are

ẋP = − cosψ∗,

ẋE = µ cos(π
2
(1 + sinωt)),

ẏE = − sinψ∗ + µ sin
(π
2
(1 + sinωt)

)
,

with initial conditions xP (0) = xP0
, xE(0) = xE0

, and
yE(0) = yE0

. The parameter ω ≫ 1. To avoid aliasing,
choose the integration time step/sampling rate ∆t = 2π

ωn ,
with the integer n ≥ 5. Now

xE(t) = −µ
ω

∫ ωt

0

sin
(π
2

sin(τ)
)

dτ (18)

and when ω → ∞, xE(t) ≈ 0. As before, the Pursuers’
strategies are given by (10).

Given the singular initial configuration considered
herein, the Evader’s optimal strategy is to run along the
orthogonal bisector of the P1P2 segment and the Value
of the game/time-to-capture

tf =
1√

1− µ2
xP0 ,

the same as in (15). Surprisingly, by deviating from
the optimal strategy ϕ∗(xP , y(xP , xE , yE)) specified in(8)
and instead staying put, the Evader has not incurred
a loss in his payoff and the Pursuers have not seen a
decrease in their cost. Chattering control has allowed
the Evader to achieve the same payoff as if he would
have used his optimal strategy. However, the Evader’s
control is a valid control ∀ T > 0, where T is the period
of his square wave input function ϕ(t), but in the limit
where T → 0 the admissibility of the Evader’s control
might be questionable. So in reality, if 0 < T ≪ 1, the
Evader will have slightly moved away from his initial
position whereas our analysis is for the idealized case
where the Evader has not moved at all. This discrepancy
is responsible for the Evader not having the time-to-
capture reduced and thus being penalized for deviating
from her optimal strategy; at the same time, the Pursuers
were not rewarded with a reduced time-to-capture, as
one would have expected. This is attributable to the non
physical control time history that the Evader was allowed
to employ. But when the period T of E’s maneuver is
T > 0, numerical calculations will show that, as expected,
his time-to-capture actually decreases.



It is thus interesting to consider the case where E
modulates his heading according to

ϕ(t) =
π

2

[
1 +A sin

(
ωt− π

2

)]
(19)

where a) A = 0, or b) A > 0. In case a) the Evader is em-
ploying his optimal strategy while in case b) the Evader is
zigzagging around his optimal path. Can dithering gain
the Evader an advantage, that is, increase his time-to
capture above the “optimal” tf = xP0

/
√

1− µ2? The
answer should be on the negative. The reader is referred
to Section IV in the sequel.

Finally, had the Pursuers been informed ahead of time
on the Evader’s strategy of staying in place, the time-to-
capture would have been reduced to tf = xP0 . However,
the prior information of whether the Evader is or is not
allowed to control his speed would not have changed the
Pursuers’ optimal strategy as specified in (8). Interest-
ingly, Isaacs himself pondered whether controlling one’s
speed in the Homicidal Chauffeur differential game would
make a difference. That controlling their speed affords no
advantage to the players is corroborated by the verbatim
quotation of footnote 1 of [10]:

“Nothing is gained by bounding instead of fixing
the speeds. Optimal strategies demand perpet-
ual top speed.”

In conclusion, the Pursuers do not know ahead of
time that the Evader is stationary and when applying
their optimal/saddle point strategy in the face of the
evader’s tardiness, they end up zigzagging along the x-
axis until they reach the Evader. Interestingly, although
the Evader deviated from his optimal/saddle point strat-
egy, when the dither frequency is high, the Pursuers’
cost did not decrease and neither did the evader’s payoff

decrease. As can happen in zero-sum games, this is an
instance where unilaterally deviating from the saddle
point strategy is not always detrimental; in deviating
from the optimal/saddle point strategy and staying put
at (0, 0), the Evader can achieve the same capture time.
The saddle point inequalities are not necessarily strict
inequalities. Note, however, that standing still at (0, 0)
is not a saddle point strategy for the Evader as it is
not robust to all possible Pursuer strategies. Had the
Pursuers known ahead of time the Evader’s strategy
of staying put, they would have responded with the
optimal strategy of running toward the Evader and the
time-to-capture tf would have decreased from the Value
xP0/

√
1− µ2 to xP0 .

To properly ascertain the demerits of the Evader’s
strategy of deviating from the optimal strategy and re-
verting to a stationary posture we need to consider states
in the R1,2 region of the state space where the Evader is in
general position, that is, xE0

̸= 0 and yE0
̸= 0; without

loss of generality assume xE0
> 0, yE0

> 0. When the
P1 and P2 team employs its optimal strategy the frame
x, y is not rotating and therefore by rapidly switching
his control ϕ between 0 and π results in the Evader’s fast
movement from East to West and back; this indeed is
tantamount to the Evader staying in place in the realistic
plane. The dynamics in our three dimensional reduced
state space are

ẋP = − cosψ∗, xP (0) = xP0

xE(t) = xE0
,

ẏE = − sinψ∗, yE(0) = yE0

and from (8)

sinψ∗ =
yE +

√
µ2y2E + (1− µ2)(µ2x2P − x2E0

)√
(1− µ2)(x2P − x2E0

) + (1 + µ2)y2E + 2yE

√
µ2y2E + (1− µ2)(µ2x2P − x2E0

)

cosψ∗ =
(1− µ2)xP√

(1− µ2)(x2P − x2E0
) + (1 + µ2)y2E + 2yE

√
µ2y2E + (1− µ2)(µ2x2P − x2E0

)

(20)

Thus, the closed loop dynamics are

ẋP =
−(1− µ2)xP√

(1− µ2)(x2P − x2E0
) + (1 + µ2)y2E + 2yE

√
µ2y2E + (1− µ2)(µ2x2P − x2E0

)

,

ẏE =
−yE −

√
µ2y2E + (1− µ2)(µ2x2P − x2E0

)√
(1− µ2)(x2P − x2E0

) + (1 + µ2)y2E + 2yE

√
µ2y2E + (1− µ2)(µ2x2P − x2E0

)

,

xE(t) = xE0
,



with initial conditions

xP (0) = xP0
,

yE(0) = yE0
.

These dynamics are valid as long as the state stays in the
state space region R1,2, that is

xP (t) ≥
1

µ
xE0

Since xP is monotonically decreasing, we integrate the

non-autonomous differential equation

dyE
dxP

=
1

1− µ2
·
yE +

√
µ2y2E + (1− µ2)(µ2x2P − x2E0

)

xP
,

with

yE(xP0
) = yE0

,

xP0 ≥ xP ≥ xE0

µ
,

and obtain its solution yE(xP ), xP0 ≥ xP ≥ xE0

µ . It is
used to calculate the duration of the initial phase of the
chase where both pursuers P1 and P2 participate:

tf1 =
1

1− µ2

∫ xP0

xE0
µ

1

xP

√
(1− µ2)(x2P − x2E0

) + (1 + µ2)y2E + 2yE

√
µ2y2E + (1− µ2)(µ2x2P − x2E0

)dxP

The end game starts when the state leaves the R1,2

region of the state space and at time tf1 enters the
R1 region of the state space. At that point, we have
yE(xP ) = yE (xE0

/µ). In the end game, the Evader
is captured solo by P1 who heads straight toward the
Evader and the duration of the end game

tf2 =

√(
1− µ

µ

)2

x2E0
+

[
yE

(
xE0

µ

)]2
,

so the duration of the chase is

tf = tf1 + tf2 .

When xE0 ̸= 0 the chase always terminates in an
endgame: If xE0 > 0 the Evader is captured in the end
game by P1 and if xE0

< 0 the Evader is captured in
the end game by P2. Under optimal play the duration
of the chase is given by (9) and we expect that in
general, by deviating from optimality and staying put,
the Evader hastened his demise. While we have assumed
the speeds of the players with simple motion are fixed, by
reducing his speed, if this were at all possible, the Evader
would gain no advantage. Obviously, the same applies to
the Pursuers; at the same time, it is also true that a
stationary Evader won’t always be seriously penalized.

IV. Numerical Experimentation
In this section, several of the aforementioned scenarios,

in which the Evader adopts a somewhat non-conventional
strategy, are evaluated numerically. The simulations are
performed by discretizing time and re-evaluating the
agents’ control policy at each time instant. The agents
apply a fixed control over the duration of the time-step,
that is u(t) = utk for tk ≤ t ≤ tk+1 and k ∈ N, thus
we have zero-order hold action. The paths of the agents
are piecewise straight since their headings are constant
for each segment. The point capture model described
previously is replaced with a small, but finite, capture

radius of 1e−3 about the pursuers. In the figures to follow,
the Apollonius circles are drawn and the game-optimal
intercept point is marked for t = 0. Note that the Apollo-
nius circles and the game-optimal intercept point change
over time as the agents move. Only in the case where all
three agents head directly to the game-optimal intercept
point does this point remain stationary in the realistic
plane. For all of the scenarios, the Pursuers implement
their optimal headings at each time step according to (8).
The scenarios are simulated with µ = 0.5, vP = 1, and
xP = 1. The Evader’s path is the red path, and the
Pursuer paths are shown in blue in the following figures.

The first scenario is the case in which the Evader is on
the y-axis and collinear with the Pursuers (near (0, 0))
and implements a control where ϕ(t) is a square wave
switching between 0 and π with period T (T > 0). One
small caveat, here, is that we place the Evader just above
the x-axis (at y = 0.01) in order for the initial game-
optimal intercept point I to be unique.

Figures 2 and 3 contain the results of the simulation for
two different choices for the Evader’s switching period,
T . In Fig. 2, T = 0.1 and the Evader’s excursion from
its start position is noticeable. The Pursuers zigzag in
towards x = 0; the amplitude of their path is a function of
the size of the timestep, which is 0.02 for this scenario. A
smaller timestep will yield paths with smaller excursions
from the x-axis. Note that for most of the scenario, the
state lies in R1,2, however, there is a short time just before
capture in which the state enters R1 wherein the Pursuers
implement pure pursuit to finish out the game. Indeed
this is one of the main reasons why tf < V (where V is
the Value of the game): here, tf = 1 and V = 1.16. Thus
the evader’s performance was worsened under this policy
compared to if he had gone to I, as expected. In Fig. 3,
the switching period is reduced to T = 0.02 and we see
that the capture time tf = 1.13 is closer to V . As T → 0
we expect tf → V , however, for smaller and smaller T



we must have smaller and smaller integration time steps
∆t. Otherwise, for finite ∆t, the value of tf may actually
exceed V , which can be attributed to the phenomenon of
aliasing in digital signal processing.
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Fig. 2: Evader implements square wave policy with ϕ(t) = 0
or π and ∆t = 0.02. Based on initial conditions, the Value of
the game is V = 1.16. Here, T = 0.10, tf = 1.00.
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Fig. 3: Same scenario as previous figure but with T = 0.02,
tf = 1.13.

The second scenario has the same initial conditions as
the first, but the Evader implements the policy in which
ϕ(t) oscillates about the optimal heading (ϕ∗ = π/2)
according to (19).

Figure 4 contains the results for this scenario. The
Evader’s non-optimal trajectory induces curvature in
the Pursuers’ trajectories. The Evader’s capture time
tf = 1.14 is less than what it would have been if he had
traveled straight for the point I, as expected.

Lastly, we investigate the case in which the Evader
stands perfectly still but at a point that is away from
the dispersal surface which occurs at (xE , yE) = (0, 0).
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Fig. 4: Evader implements policy where ϕ(t) oscillates about
the optimal ϕ∗. ∆t = 0.001, A = 0.7, ω = 50, tf = 1.14;
V = 1.16.
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Fig. 5: Evader stands still at (xE , yE) = (0.25, 0.25),
∆t = 0.001, tf = 0.83; V = 1.32.

Figure 5 contains the results of the simulation. Note,
because the initial conditions are different in this sce-
nario, the Value of the game is also different. As discussed
in the preceding section, this scenario results in two
phases of play for the Pursuers. In the first phase, from
0 < t < tf1 , the Pursuers take a curved path which
deviates away from the game-optimal trajectories. From
the simulation, tf1 ≈ 0.576. The knee in the Pursuers’
curves occurs when the three agents become collinear,
after which the Pursuers zigzag towards the Evader until
tf1 . At tf1 , the state of the system enters R1, and thus
we have xE/µ = xP = 0.5 [see 7, Theorem 1]. Already,
we know the y position of P1 is 0.25 since tf1 occurs
after the knee, in this case. Thus tf2 is the time needed
for P1 to cover a distance of 0.25. By standing still away
from (0, 0), in the relative frame, the evaders performance
is much worse than if he had chosen to head for I. In
summary, for each of the three scenarios considered, the
Evader cannot improve his capture time above the game-



optimal Value by, e.g., dithering or staying put. This
might not be so if more pursuers join the fight.

V. Conclusion

In this paper, we have carefully considered the singular
surface present in the Two Cutters and Fugitive Ship
game posed by Isaacs. Our purpose in investigating the
dispersal surface was to determine whether the Evader
could exploit the presence of the singularity. We showed
that, in discrete-time with piece-wise constant headings,
the Pursuers’ control will chatter when faced with an
Evader who stands still on or near the dispersal surface.
In the limit as we shrank the timestep to zero, the effect
of the Pursuers’ zigzagging was that they approached
the Evader at reduced speed. Nevertheless, the accumu-
lation of many infinitesimal performance losses of the
Pursuers resulted in the Pursuers reaching the Evader
precisely at the time dictated by the Value of the game.
Thus, the Evader was not penalized for standing still
in such a configuration. It is generally known that the
regular/primary solutions, e.g. the ones corresponding
to the canonical Two Cutters and Fugitive Ship pursuit
strategy, are not always sufficient to fully describe opti-
mal play in differential games – hence the famous quote
of Isaacs in the Introduction. We have shown a prime
example: although the Evader did not lengthen its life by
standing still, it was able to achieve the Value of the game
using a strategy other than the canonical strategy. One
implication is in two-pursuer, multiple-evader scenarios
with capture in succession: an intelligent evader equipped
with this knowledge may be able to aid a fellow evader by
choosing its own, out of the way, capture location while
not sacrificing any remaining life. Another implication
is that specialized pursuit strategies may be required in
the vicinity of singularities to prevent exploitation by the
evader(s).
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